Zukunftssichere Maschinenwartung: Die Auswahl des idealen Zustandsüberwsachungssystems

Share This Post

Zukunftssichere Maschinenwartung: Die Auswahl des idealen Zustandsüberwsachungssystems

Wussten Sie, dass effektive Zustandsüberwachungssysteme die Wartungskosten nachweislich um bis zu 25 % senken können?

In den sich schnell entwickelnden Branchen von heute reichen herkömmliche Instandhaltungspraktiken allein nicht mehr aus, um mit den Anforderungen moderner Maschinen und Anlagen Schritt zu halten. Um Ihre Instandhaltungsstrategien zukunftssicher zu machen, müssen Sie ein ideales Zustandsüberwachungssystem implementieren.

Diese fortschrittlichen Werkzeuge erkennen proaktiv potenzielle Probleme, verhindern kostspielige Ausfälle und optimieren die Produktivität. Doch wie können Sie bei der Vielzahl der verfügbaren Optionen das perfekte Zustandsüberwachungssystem für Ihr Unternehmen auswählen?

In diesem Artikel gehen wir auf die wesentlichen Faktoren und Überlegungen ein, die Sie bei der Auswahl eines solchen Systems unterstützen, das eine nachhaltige Instandhaltung bei gleichzeitiger Maximierung der Kosteneinsparungen gewährleistet.

Zu diesem Zweck haben wir den Artikel in zwei Teile unterteilt: Der erste Teil befasst sich mit den internen Faktoren, die bekannt sein und bewertet werden müssen, der zweite Teil hilft Ihnen bei der Bewertung der verfügbaren Tools und Technologien.

Teil 1: Bewertung der internen Faktoren

Faktor 1 - Ihre Maschinen im Blick

Die Zustandsüberwachung wird in der Regel für kritische Maschinen eingesetzt, deren Ausfall das Unternehmen sowohl finanziell als auch produktiv einen hohen Verlust kosten kann. Jeder industrielle Prozess hat eine Liste von “Bad Actors”, d. h. von Maschinen, die besonders störanfällig sind und deren Ausfall besonders schmerzlich zu Buche schlägt.

Daher ist die erste Voraussetzung für die Auswahl des idealen Zustandsüberwachungssystems, dass Sie wissen, welche Ihre kritischsten Maschinen sind. Eine Möglichkeit, dies herauszufinden, ist die so genannte “Kritikalitätsanalyse”.

Dabei handelt es sich um ein Verfahren, mit dem Instandhaltungsteams den verschiedenen Anlagen eine Rangfolge zuweisen, die auf dem potenziellen Produktivitätsverlust basiert, den sie im Falle eines Ausfalls verursachen. Sobald Sie die kritischen Maschinen identifiziert haben, können Sie zu den anderen Faktoren übergehen.

Faktor 2 - Fehlermodi

Der nächste entscheidende Schritt ist die Durchführung einer FMECA (Failure Modes, Effects, and Criticality Analysis), die sich speziell auf die 20 % der kritischsten Maschinen bezieht. Jeder Fehlermodus weist ein einzigartiges Muster auf, das durch verschiedene Datenquellen wie Spannungswellen, Vibrationen usw. ermittelt werden kann.

Bestimmte Fehlermuster sind sehr auffällig, so dass sie von den Sensoren erkannt werden können, sobald sie auftauchen. Es gibt jedoch auch andere Muster, die möglicherweise erst dann messbar werden, wenn das System vollständig ausfällt.

Daher ist es unerlässlich, die Datenquellen für die Zustandsüberwachung zu identifizieren, die auf der Grundlage der kritischen Fehlermodi, die überwacht werden müssen, von Wert sind. Durch die Bestimmung der Kritikalität dieser Fehlermodi können Sie bei der Auswahl geeigneter Datenquellen für eine effektive Überwachung Prioritäten setzen.

Faktor 3 - Die Umgebung der Maschine

Bei der Auswahl des idealen Zustandsüberwachungssystems ist die Kenntnis der Umgebung, in der Ihre kritischen Maschinen arbeiten, von entscheidender Bedeutung. Heutzutage erfolgt die Datenerfassung meist über drahtlose Sensoren. Diese Sensoren sind empfindliche Geräte und müssen daher vor extremen Umwelteinflüssen wie hohen Temperaturen, korrosiven Stoffen und mehr geschützt werden.

Darüber hinaus kann es schwierig sein, Sensoren direkt an schwer zugänglichen Geräten anzubringen, z. B. in ATEX-Zonen oder anderen eingeschränkten Bereichen.

Faktor 4 - Abstimmung von Anwendungsfall und Datenquelle

Für eine effektive Zustandsüberwachung ist es entscheidend, den Anwendungsfall mit der entsprechenden Datenquelle abzustimmen. Jeder Anwendungsfall erfordert die Überwachung spezifischer Datenparameter, wie Temperatur, Vibration oder Druck. Das Verständnis der Anforderungen des Anwendungsfalls und die Identifizierung der relevanten Datenquellen, wie z. B. Sensoren, IoT-Geräte oder Datenbanken, gewährleisten eine genaue Datenerfassung. Die richtige Abstimmung zwischen Anwendungsfall und Datenquelle ermöglicht aussagekräftige Einblicke, vorausschauende Wartung und proaktive Entscheidungsfindung, wodurch die Effektivität der Zustandsüberwachung insgesamt verbessert wird.

Denken Sie bei Ihrer Suche nach dem besten Tool daran, dass es wichtig ist zu verstehen: 

  • Wie jedes Tool Daten sammelt und misst
  • Welche Anforderungen an die Installation des Tools gestellt werden
  • ob das Tool alle Konnektivitäts- und Regulierungsanforderungen erfüllt

Teil 2: Bewerten Sie die verfügbaren Technologien

Die Auswahl des besten Tools für die Zustandsüberwachung hängt von mehreren Faktoren ab, darunter Ihre spezifischen Anforderungen, Ihre Branche, Ihr Budget und die verfügbaren Ressourcen. Im Folgenden finden Sie einige Schritte, die Ihnen bei diesem Prozess helfen:

Low-code oder no-code Entwicklung:

Suchen Sie nach Tools, die eine Low-Code- oder No-Code-Entwicklungsumgebung bieten. Mit diesen Plattformen können Sie benutzerdefinierte Überwachungsanwendungen und Arbeitsabläufe ohne umfangreiche Programmierkenntnisse erstellen, was schnellere Entwicklungs- und Iterationszyklen ermöglicht. Prüfen Sie die Benutzeroberfläche, die Drag-and-Drop-Funktionalität und die einfache Anpassung des Tools, um sicherzustellen, dass es Ihren Low-Code-Anforderungen gerecht wird.

Integrationsmöglichkeiten:

Beurteilen Sie die Integrationsfähigkeit des Tools mit Ihren bestehenden Systemen und Ihrer Infrastruktur. Es sollte in der Lage sein, sich nahtlos in Ihre Datenquellen, wie Sensoren, Datenbanken oder andere Überwachungsgeräte, zu integrieren. Achten Sie auf Tools, die Standardprotokolle unterstützen und über vorgefertigte Konnektoren oder APIs verfügen, um den Datenaustausch mit Ihrem Ökosystem von Anwendungen zu erleichtern.

Schnelligkeit der Markteinführung:

Achten Sie auf die Fähigkeit des Tools, schnell eingesetzt zu werden und mit der Überwachung zu beginnen. Achten Sie auf Funktionen wie schnelle Konfiguration, einfache Einrichtung und automatisierte Arbeitsabläufe, die den Implementierungsprozess rationalisieren. Einige Tools bieten Vorlagen oder vorkonfigurierte Module für bestimmte Branchen oder Anwendungsfälle, die die Implementierung beschleunigen und die Entwicklungszeit verkürzen können.

Kompatibilität mit bestehenden Technologien:

Beurteilen Sie, wie gut das Zustandsüberwachungs-Tool mit Ihrem bestehenden Technologie-Stack harmoniert. Es sollte mit Ihrer aktuellen Software, Datenbanken, Cloud-Infrastruktur und Kommunikationsprotokollen arbeiten können. Ziehen Sie Tools in Betracht, die flexible Bereitstellungsoptionen (vor Ort, in der Cloud, hybrid) bieten, um der IT-Strategie Ihres Unternehmens zu entsprechen.

Skalierbarkeit und Flexibilität:

Bewerten Sie die Fähigkeit des Tools, mit wachsenden oder veränderten Überwachungsanforderungen mitzuwachsen. Es sollte in der Lage sein, ein großes Datenvolumen zu verarbeiten, mehrere Überwachungspunkte zu unterstützen und künftige Erweiterungen zu ermöglichen. Achten Sie auf Tools, die eine modulare Architektur oder Erweiterungsoptionen bieten, so dass Sie bei Bedarf Funktionen hinzufügen oder ändern können.

Unterstützung und Dokumentation des Anbieters:

Achten Sie auf den Grad der Unterstützung durch den Anbieter des Tools. Achten Sie auf Ressourcen wie Dokumentation, 1st level und 2nd level Support, die Ihnen helfen können, Probleme effizient zu lösen. Prüfen Sie, ob der Anbieter einen reaktionsschnellen technischen Support, Schulungsprogramme und laufende Aktualisierungen oder Verbesserungen des Tools anbietet.

Um ein zukunftssicheres Zustandsüberwachungs-Tool zu finden, das für mehrere Anwendungsfälle wie vorausschauende Wartung und künstliche Intelligenz verwendet werden kann, sollten Sie Insellösungen für einen einzigen Anwendungsfall vermeiden und die folgenden Faktoren berücksichtigen:

Modulare und erweiterbare Architektur:

Suchen Sie nach einem Tool mit einer modularen und erweiterbaren Architektur, die es Ihnen ermöglicht, Funktionen hinzuzufügen oder zu ändern, wenn sich Ihre Anforderungen entwickeln. Dank dieser Flexibilität können Sie zusätzliche Anwendungsfälle, wie z. B. vorausschauende Wartung oder KI, einbeziehen, ohne in separate Tools oder Systeme investieren zu müssen.

Datenanalysefunktionen:

Stellen Sie sicher, dass das Zustandsüberwachungswerkzeug über robuste Datenanalysefunktionen verfügt. Es sollte fortschrittliche Analysetechniken wie maschinelles Lernen und KI-Algorithmen unterstützen, um Erkenntnisse aus den gesammelten Daten abzuleiten. Dies ermöglicht Ihnen, über die einfache Zustandsüberwachung hinauszugehen und das Tool für die vorausschauende Wartung und andere fortschrittliche, analytische Anwendungsfälle zu nutzen.

Offene APIs und Interoperabilität:

Vergewissern Sie sich, dass das Tool offene APIs (Application Programming Interfaces) bietet oder Industriestandardprotokolle zur einfachen Integration mit anderen Systemen und Technologien unterstützt. So können Sie das Zustandsüberwachungs-Tool mit Ihren bestehenden KI-Plattformen, Data Lakes oder Predictive-Maintenance-Lösungen verbinden und ein einheitliches Ökosystem anstelle isolierter Funktionsinseln schaffen.

Skalierbare Datenverarbeitung:

Achten Sie auf die Fähigkeit des Tools, große Datenmengen effizient zu verarbeiten. Wenn Sie Ihre Anwendungsfälle erweitern und mehr Daten sammeln, sollte das Tool in der Lage sein, die steigende Datenlast zu bewältigen. Skalierbare Datenspeicher-, Verarbeitungs- und Analysefunktionen sind für die Zukunftssicherheit Ihrer Überwachungslösung unerlässlich.

Flexibilität bei den Datenquellen:

Stellen Sie sicher, dass das Tool eine breite Palette von Datenquellen unterstützt, die über herkömmliche Sensoren hinausgehen. Es sollte in der Lage sein, Daten von verschiedenen Geräten, Datenbanken, IoT-Sensoren oder sogar unstrukturierten Datenquellen aufzunehmen. Dank dieser Flexibilität können Sie verschiedene Datenströme in Ihre Zustandsüberwachung und KI-Workflows einbinden.

Ökosystem und Partnerschaften des Anbieters:

Bewerten Sie das Ökosystem und die Partnerschaften des Anbieters. Suchen Sie nach Tools, die über ein starkes Netzwerk von Partnern oder Integratoren verfügen, die zusätzliches Fachwissen und Unterstützung für verschiedene Anwendungsfälle bieten können. Ein solides Ökosystem deutet auf einen vorausschauenden Ansatz hin und erhöht die Wahrscheinlichkeit, ergänzende Lösungen für zukünftige Anforderungen zu finden.

Künftiger Fahrplan und Innovation:

Untersuchen Sie das Engagement des Anbieters für Innovation und seine zukünftige Roadmap für das Zustandsüberwachungs-Tool. Achten Sie auf die Erfolgsbilanz des Anbieters bei der Integration neuer Technologien und Funktionen in sein Produkt. Achten Sie auf Anzeichen dafür, dass das Unternehmen aktiv Fortschritte in den Bereichen künstliche Intelligenz, prädiktive Analysen und andere neue Technologien erforscht, um an der Spitze der Branche zu bleiben.

Wenn Sie diese Faktoren berücksichtigen, können Sie ein Zustandsüberwachungs-Tool auswählen, das nicht nur Ihre aktuellen Anforderungen erfüllt, sondern auch eine Grundlage für künftige Anwendungsfälle bietet und die Einschränkungen von Einweg-Insellösungen vermeidet.

Sind Sie bereit, Ihren Betrieb zu revolutionieren?

Fordern Sie jetzt eine Demo an und erschließen Sie das Potenzial der intelligenten Zustandsüberwachung. Wir bei Paze haben nicht nur das performanteste Tool für Ihr Projekt, sondern unterstützen Sie in jeder Phase für eine erfolgreiche Umsetzung.

Gerne einen unverbindlichen Beratungstermin buchen.

More To Explore

Wie Sie IT und OT zusammen bringen

Wie Sie IT und OT zusammen bringen

Manchmal ist ‘ähnlich’ sehr unterschiedlich. Das ist der Fall bei der Informationstechnologie (IT) und der Betriebstechnologie (OT). Beide Lösungen basieren auf der Leistung von Mikroprozessoren

This website uses cookies for a better experience.